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To construct numerical schemes of the Godunov type for solving
magnetohydrodynamical (MHD) problems, an approximate method of
solving the MHD Riemann problem is required in order to calculate the
time-averaged fluxes at the interfaces of numerical zones. Such an
MHD Riemann solver is presented here which treats all waves
emanating from the initial discontinuity as themselves discontinuous.
Thus shock jump conditions are used Tor smefactions, which limits the
applicability of this work to weak rarefactions, the case most important
for computation. The solutions from our approximate MHD Riamnn
solver consist of two fast waves (either shock or rarefaction) two
rotational discontinuities, two rarefaction waves (either shock or
rarefaction}, and one contact discontinuity for a general MHD Riemann
problem. In order to display rotational discontinuities, a three-compo-
nent model is necessary. Only under very limited circumstances is there
no rotational discontinuity involved and thus the two component
approximation may be used in the MHD Riemann problem. The solu-
tions of the MHD Riemann problem in the shock tube problem which
generates the compound wave in the earlier work contain two fast
rarefaction waves, two slow shocks, one contact discontinuity, and one
rotational discontinuity in our formalism.  '© 1994 Academic Prass, Ine.

1. INTRODUCTION

During the last three decades, highly elficient numerical
schemes for the conscrvation laws of hydrodynamics have
been developed. Among them, Godunov-type schemes are
considered to be particularly efficient for many problems,
especially for shock dynamics. Examples of the Gedunov-
type schemes arc Godunov's scheme [1], the MUSCL
scheme [2,3.9] and its successor PPM {4, 7, 8], Roc’s
scheme |37, Hartenw's TVD schieme 6], and the ENO
sclicmies [ 1O 12 ] 1t is natural (o extend what we know 1o
be efficient and sufficiently accurate in hydrodynamics to
magnetohydrodynamics (MHD).  Several investigators
have worked on the development of high-order Godunov-
type schemes for MHD (Giz [13], Giz and Woodward
[21], Brio and Wu [16]. Zachary and Colella [22]). Giz
and Woodward have developed an approach useful only lor
MHD shocks of modest strength. Brio and Wu [ 167 have
developed a high-resolution method for MHD based on a
Roe-type approach, but their techniquc requires the ratio of
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the specific heats y = 2 to perform the analytic flux difference
splitting. Zachary and Colella [22] have applied an
cxtension [197] of the Engquist-Osher flux to the MHD
eguations to develop a technique for a solution of the MHD
Riemann problem. (Our work was concurrent with that
reported in their note {227.) The MHD Riemann solver
presented below is intended for use in problems which
involve strong nonlincar waves,
Thus we consider conservation laws,

oU  IFIU) _
Gt ax

0, ()

and their discretized form,

4 .
(Udy= U + 50 (F L~ Fy)

Here U is a vector which represents a set of variables and
F(U) represents the associated flux vector. (U is the old
zone-averaged value of vector U, and (U}, is its updated
value. F,_is the time-averaged flux over the time step At at
the left boundary of the current zone; Fy is the time-
averaged flux at the right boundary of the zone. The
discretized form of Eq. (1) is exact. A Godunov-lype
approximation can be viewed as a means of constructing
from the zone averages (U) appropriate left and right
states U,, and Uy, from which the flux F, may be
approximated by solving the corresponding Ricmann
problem. Thux the Riemann problem is the key ingredient in
this type of schemes.

In [7] by Woodward and Colella, an extensive
comparison of various numcrical methods for shock
hydrodynamics was made and it was found that the most
accurate one of the methods tested there was the piecewise-
parabolic method (PPM), developed by Woodward and
Colelta. In this paper the same technique is used in that all
the waves emanating from the initial discontinuity are
treated as discontinuous jumps. Since this technique works
for shock dynamics quite well, we expect it to work for
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MHD in the most important applications, weak rare-
factions. Thus the basic idea of the approximate Riemann
solver in PPM is used and the special procedures for the
MHD case are presented in this paper.

Since the MHD equations form a nonstrictly hyperbolic
system, and even a nonconvex system [ 16], the wave struc-
ture is more complicated than that in hydrodynamics. Much
attention has been devoted to the hyperbolicity and non-
convexity of the MHD system (Glimm [18] and that
spatial conference proceedings). One conclusion drawn
from the nonconvexity is the existence of the compound
wave consisting of a shock and attached (o it a rarefaction
wave of the same family as shown by Brio and Wu [16] (see
Fig. 1}. In this paper, we will show that the solutions of the
MHLD Riemann problem in the shock tube problem which
generate the compound wave in the earlier work, contains a
rotational discontinuity in our formalism. We find that the
solutions for a typical MHD Riemann problem contains
two fast waves (either shock or rarefaction), two slow waves
(either shock or rarefaction), two rotational discontinuities,
and one contact discontinuity.

Our main concern for the Riemann solver is that it
produces a reasonable solution obeying all conservation
laws for any pair of left and right states and including all the
kinds of discontinuities in ideal MHD. It is intended to be
used mainly for the calculation of time-averaged fluxes at
" the interfaces of numerical zones for a Godunov-type
scheme. Problems possibly arising from non-strict hyper-
bolicity or non-convexity will be handled through the dis-
cretization of the conservation law Eq. (1) on the grid. This
will represent any compound waves over several grid zones.
Problems resulting from degenerate wave speeds for which
different results are obtained depending upon the ratio of
infinitesimal transport coefficients must also be handled by
adding appropriate physical and/or numerical dissipation
terms to the computer code beyond the Riemann solver.

A one-dimensional system described by ideal MHD equa-
tions permits Alfven waves as well as fast and slow MHD
waves generally. Associated with these three kinds of waves,
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FIG. 1., Waves produced in a shock tube.
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three kinds of discontinuities, fast shocks, rotational discon-
tinuities, and slow shocks, are allowed to exist in the ideal
MHD besides contact discontinuities. All the discontinuities
allowed to exist in the system have been taken into
consideration in this paper. Thus the Riemann solver to be
presented in this paper includes interactions among the ail
discontinuities in the ideal MHD.

The pian of this paper is as follows. In the second section,
MHD equations in a Lagrangian mass coordinate are intro-
duced. In the third section, we give a lincar Riemann solver
similar to that developed by Giz [13] for a Godunov
method (cf. [1]), which may be used in the first step in the
nonlinear Riemann solver. General jump conditions for ail
the discontinuities are presented at the beginning of the
fourth section, and the properties of the rotational
discontinuities and MHD shocks are investigated there.
The procedures for an approximate nonlinear Riemann
solver are constructed in the fifth section. A summary of this
work and brief discussions are given in the final section of
this paper.

2. MHD EQUATIONS

The ideal MHD equations characterize the flow of a
conducting fluid in the presence of a magnetic field. They
represent the coupling of fluid dynamical equations with
Maxwell’s equations of electrodynamics. By neglecting
displacement current, electrostatic force, effects of viscosity,
resistivity, and heat conduction, one obtains the following
ideal MHD equations (see Landau and Lifshits [237):

ép

E+V'(PU)=0,

du 1
p(a—+u-Vu)= ~Vp+ o (VXB)xB,

g/t | -
6t(2pu +p£+8nB)——V-q,

%—?:Vx(uxB).

Here p is the density, u the flow velocity, B the magnetic
field, p the thermal pressure, & the internal energy of the
fluid, and q is the energy Mux defined as

quu(%u2+c+%p)+Zl£Bx(uxB).
The magnetic field satisfies the divergence-free condition,
and the thermal pressure is related to the internal energy
through the gamma-law equation of state p=(y—1) pe.
The Lagrangian equivalents of these Eulerian MHD equa-
tions can be obtained by introducing d/dt = (6/0t +u - V).
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We introduce a Lagrangian mass coordinate m by the
relation dm = p dx, and write the MHD equations in the
mass coordinate:

av
— . =0
dt Vi u=0,
du
—+V,.-P=0,
dt+ "

dE

4V, (P-u)=0

dz+ m (P-u)=0,

d
= (VB)=V,, () =0.

Here V' is the specific volume of the fluid, P is the total
pressure tensor including the magnetic field, and E is the
specific total energy. They are defined as

BZ
(p+81r) s
Es—u2+s+-1—B2
2 8n

In this paper we will construct an approximate Riemann
solver for use in numerical methods which employ direc-
tional operator splitting. Therefore we will restrict our
attention to the one-dimensional MHD equations which
are obtained from the MHD equations in the mass coor-
dinate by assuming that all variables depend on x and ¢
only. The resulting equations are

%z _%‘;, (2.2)
%= _‘;im (2.3)
%: _‘Zim (24)

d 3]
= (VBy)=%(Bxu_v), (2.5)

d d
E(VBZ)=%(B):“2): (26)

dE 0
o= " m (Pu,+A,u,+ A u,)

- 2.7)

Here the mass coordinate m is simplified to dm = p dx and
any symbol with the subscript x {(or y or z} is the x {or y
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or z) component of the variable. The longitudinal part of the
magnetic field B, is a constant, and P, 4,, and A, are
defined by the following equations:

1
P=p+— (B + B —B),

&n
1
A,= _EB“B}"
A= LJ.‘i’ B
= 47[ X =

It is well known that this system permits Alfven waves,
fast waves, and slow waves. It should be pointed out that
Alfven waves do not occur generally if we demand that
u#,=0and B.=0. Thus, in order to take into consideration
Alfven waves and their associated rotational discontinuitics,
we have to treat the full equations (2.1 }-(2.7).

3. A LINEAR RIEMANN SOLVER

Interactions involving shocks are rarefactions in a tube
filled with gas (a “shock tube”) were studied by Riemann
more than one hundred years ago. The MHD Riemann
problem is the initial value problem, Eqgs. (2.1}-(2.7),
subject to a specified initial condition:

U,
Ur

{x <0),
U"(x)_{ (x> 0).
Here U, and Uy are any given left state and right state, and
they are completely specified by seven variables, ¥, p, u_, u,,
u., B,, and B, and three constants, the ratic of the specific
heats y, gas constant R, and the longitudinal component of
the magnetic field B,..

With increasing time bevond zero, the discontinuity
between the initial left and right states will break into
leftward and rightward moving waves which are separated
by a constant surface. Each wave can be either a shock or a
rarefaction wave or a rotational discontinuity, depending
on the initial data. It is possible to have a discontinuity
across each wave front. Thus six wave fronts corresponding
to the three waves in each direction and a contact surface
separate the whole (m—r) (or (x—1)) plane into eight
possibly different regions. We label them R1, R2, R3, R4,
RS, R6, R7, and R8, respectively, as in Fig. 2. The states in
the regions R1 and R8 are the left and right states, respec-
tively. The Riemann problem is to determine the types of
waves, their strengths, and their speeds, and the flow
properties in the other six regions. The algorithm for deter-
mining the solution of this problem is called a Riemann
solver in MHD.



A RIEMANN SOLVER IN MHD

1
slow wave r
B ,slow wave
rotation.,
R3 R4 RS R6 --.___{__..--rotation
fast wave S -
T e - R7 fast wave
R1

m

FIG. 2. All possible waves generated from a MHD Riemann problem
and eight possibly different states divided by the wave fronts.

As an introductory step to the approximate nonlinear
Riemann solver which we will construct in the fifth section,
we first construct 2 linearized approximate Riemann solver.
Following the steps in the book by Courant and Friedrichs
[24], we first write Eqs. (2.1)-(2.7) in the form

Here A is a 7 x 7 matrix, which can be obtained with no
difficulty. From the eigenvalues of the matrix 4, one may
obtain the nonlinear wave speeds in the mass coordinate
for Alfven waves, fast waves, and slow waves, C,, C,, and
C,,ie,

C2=—’C2,
C2 =4[(CE+CI+CH L J(CT+CE+C)—4C3C2].

Here C,, C,, and C, are defined as

Co=/vPpP:
C.=./pB/(4n),
C,= /o(BI+ BI/(dm)

The plus sign is for fast waves and the minus sign for slow
waves. Besides these eigenvalues, there is a zero-eigenvalue,
which is the propagation speed for entropy disturbances in
the fluid in the Lagrangian coordinate.

Each wave speed C in ¢ither direction defines a charac-
teristic in the m — ¢ plane:

dm
—=C.
dt

Corresponding to each characteristic, there is a Riemann
invariant R associated with it, which is conserved along the
characteristic, ie.,

" _c.

dR=0 n

along
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The Riemann invariant R, associated with the zero-
eigenvalue is related to the specific entropy of the gas:

RO = pV]/.

The remaining six Riemann invariants may be expressed
only as inexact differentials:

dR;y =(C3 - C)(dP+ Crdu,) + pA(dA, + C du,)
+ pA:(dA: i Cfdu:)

)
=0 along E’?:J_rcf,

dR,, =(C2— C2)dP+ C, du,) + pA,(dA, + C, du,)
+pAdA, + Cydu,)

=0 along

L)

dm
—=+C
dr

1
dRaj: == Ca(Bz duy - B_v duz) - Z?; B.r(B: dBV - B_\’ dB:)

=0 along %:E= +C,.

Fortunately, for numerical computations, only differences
of Riemann invariants will be required.

The directions of the characteristics are determining
factors in discussing the dependence of the solution on the
given initial data. Consider any point 4 in the {m — )-plane,
and draw the seven characteristics L, , L., L,,,and L,
through the point 4 until they intersect the me-axis, see
Fig. 3. The interval from 4,, to 4,_ on the m-axis is the
domain of dependence of the point 4. Any disturbance of
the initial data outside of this interval does not influence the
values at the point 4. The disturbance of the initial data in
the domain of dependence is by no means confined to
infinitesimal amplitude. The only restriction we will impose

Aty Mgy Ase

FI1G. 3. The domains of dependence for MHD fast waves, slow waves
and Alfven waves. L., are the characteristics for two fast waves, L, for
the two slow waves, and L, for the two Alfven waves,

Ag

A, A, Ap



358
in this section is that the flows are assumed to be
continuous.

Since the Riemann invariants are constants along their
own characteristics, we can construct the states in each of
the six regions using the Riemann invariants by assuming
that the invariants do not change when they cross the other
characteristics. This assumption is true only for continuous
flows. Under this assumption, the Riemann invariants R, , ,
R,.. R, Ry, R,_,R,_,and R, at the point 4 have the
same values as those at the points A, , 4, , 4, , 4. 4,_,
A4,_,and A, , respectively (see Fig. 4).

Since we have constant left and right states and the jump
between them is assumed to be small in this section, all
characteristics of the same family starting from the left (or
from the right) of A, can be considered to be parallel
straight lines. Thus the state in the region R4 can be
calculated from the conservation of the Riemann invariants
along their characteristics. For example, we have the
following set of equations for the state {U/,,i=1,2,..,7} in
region R4:

i=7
Y al{ TNV~ U, )=0,
I=1
i=7
Y AU = Uy)

i=1

0,

i=

i=

Af+ Aa+ As+ AO As— Aﬂ- Af-

FIG. 4. The procedures to find the state in region R4 in a linear MHD
Riemann solver.

DAI AND WOODWARD

Here coefficient a{/ ™ is that in the differential dR,, if we
write it as

=7
dR,;, = ¥ 2+ du,

=1

and the remaining coefficients have the similar meanings for
each Riemann invariant, respectively. The subscript “L” (or
“R™} stands for the evaluation at the left (or right) state.

This linear Riemann solver is accurate only in the limit of
weak wave disturbances, but it can be used for the initial
guess for weak discontinuities.

To complete the discussion, we give the Riemann
invariants for the specific cases with vanishing transverse or
longitudinal part of the magnetic field. For vanishing
transverse components of the field, we have

di
dR,,. =0 along o +C,
= dt
dR,5, =0 along Al +C,,

with the definitions

dei = [dP] * CO du,\'s
dRy, =dA, + C du,,

dRy, =dA_+ C_ du,.
For the vanishing longitudinal component of the
magnetic field, we have

d
dR, =0 along —T =xC,,

with the definitions

CMSE \1 C{2)+ C?!

dR_.=[dP]+C,, du..

4. DISCONTINUITIES

As we know, initial discontinuities are sometimes
smoothed out, while other disturbances starting as perfectly
continuous motions cannot be maintained without
generating discontinuities if the viscosity, resistivity, and the
heat conduction of the fluid are negligible. Shock transitions
occur only in a narrow region where the gradients of the
flow velocity, the thermal pressure, and the magnetic figld
become very large while, outside of the transition region, the
flows obey the laws estabiished for smooth motions.
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The discontinuitics in MHD can be described by the
following jump conditions, which can be obtained by
integrating the conservation laws Egs. (2.1}-{2.7) across the
discontinuities:

WiV]=—Lu.] (3.1)
Wlu,]1=[P], (3.2)
Wlud=1[4,], (3.3)
Wlu]=[4.] (3.4)
W[VB,]1=—B,[u,l. (3.5)
WIVB.]=—8[u.], (3.6)
WLE]=[uP]+ [u,A, ]+ [u.A.]. (3.7

Here W is the speed of the discontinuity surface propagating
in the mass coordinate. In fact, it is the mass flux entering
the surface. The bracket [X7] stands for the difference
between the states on the two sides of the surface, ie.,
[X]=X,— X;. The speed W is negative when the discon-
tinuity propagates in the negative m direction. In the
remainder of this paper, the subscript “0” is referred to the
evaluation at a pre-shock state unless it is specified
otherwise. The post-shock state is denoted by the subscript
“1.” We mention that this set of jump conditions derived
from the conservation laws in the Lagrangian coordinate is
equivalent to those derived from the Eulerian equations in
the book by Landau and Lifshitz [23].

Although the differential equations are meaningful only
when flows are smooth, the integral form Eqs. (3.1)-(3.7) of
the conservation laws holds even when the changes occur
discontinucusly in the form of jumps. The reason is that the
conservation of mass, momentum, energy, and magnetic
flux are more fundamental than the differential equations.
This set of jump conditions can be derived from these con-
servation laws directly. The mass, momentum, energy, and
magnetic flux are still conserved when the small dissipation
terms neglected in Egs. (2) are included. Since the conserva-
tion of these quantities implies that the jumps across shocks
do not depend upon their internal structure, we may in fact
obtain the viscosity, heat conduction, and resistivity which
determine that internal structure. We will therefore suppose
that the flows are completely determined by these jump con-
ditions and that the specific entropy increases when the fluid
crosses a shock, since the viscosity, heat conduction, and
resistivity are neglected. In our Riemann solver, we will
approximate rarefactions by rarefaction shocks obeying the
Jjump conditions given above (and involving decreases in the
entropy). This approximation limits the applicability of this
work to weak rarefactions.

In the case of degenerate wave speeds, which occurs
infrequently, Brio and Wu [16] have pointed out that the
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Riemann problem solution may depend upon the ratio of
the small neglected terms in our conservation laws, and
hence upon the internal structure of a wave which here is
assumed to be discontinuous. We will ignore this complica-
tion here because our Riemann solver is intended mainly for
use in the calculation of the time-averaged fluxes at the
interfaces of numerical zones. If such degeneracies are
important in a given numerical simulation, it must be the
responsibility of the programmer to add appropriate
physical and/or numerical dissipation terms to his or her
computer code so that an appropriate ratio of different
kinds of dissipation is obtained.

Since cur Riemann solver deals with waves as discon-
tinuities, we will first review five kinds of discontinuities in
ideal MHD: contact discontinuities, tangential discon-
tinuities, fast shocks, siow shocks, and rotational discon-
tinuities. More detailed description of MHD discontinuities
may be found in many standard texts (for example, Landau
and Lifshits {23], Jeffrey and Taniuti [26], Kulikovskiy
and Lyubimov [27], Kantrowitz and Petschek [28]). Con-
tact discontinuities are associated with the characteristic of
zero speed. No jump is allowed except in the density and
energy in a contact discontinuity. A contact surface in
MHD is one separating two parts of the fluid without any
flow of the fluid through or along the surface. A tangential
discontinuity can occur in the special case when the
longitudinal component of the magnetic field vanishes and
the density and the transverse components of both the
magnetic field and the flow velocity jump discontinuously,
but total pressure P and the longitudinal component of the
fiow velocity are continuous. Both contact and tangential
discontinuities do not propagate in the Lagrangian coor-
dinate, but there are jumps in the tangential components of
the magnetic field and the flow velocity in a tangential
discontinuity. The tangential discontinuity can be viewed
as a limiting case in which the contact discontinuity, slow
wave, and Alfven wave all tend to collapse into a single
discontinuity as B, tends to zero.

Shock fronts are discontinuity surfaces which are crossed
by the fluid. The side of the shock front through which the
fluid enters will be called the pre-shock state, the other, the
post-shock state. There exist jumps in all the variables,
including the density, the flow velocity, the pressure, and the
magnetic field.

For a fast shock, the magnitude of each transverse com-
ponent of the magnetic field 1s larger in its post-shock state
and smaller in its pre-shock state. The increase of the
magnitude from the pre-shock state to the post-shock state
for a fast shock is due to both the compression and the
shearing of the fluid. This is illustrated in Fig. 5a, where a
fluid element is shown as it is in the pre-shock state and in
the post-shock state for a fast shock. The fluid is sheared
against the direction of the transverse component of the
magnetic field in the post-shocks state for a fast shock. Thus
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FIG. 5. The compressing and shearing for a MHD fast shock (a) and
for a MHD slow shock (b). The fluid is sheared against the direction of the
transverse component of the magnetic field for a fast shock and is sheared
in the direction of the transverse component for siow shock.

the shearing makes the magnitudes of both transverse
components of the magnetic field increase.

Across a slow shock, the magnitude of each transverse
component of the magnetic field decreases from its pre-
shock state to its post-shock state. This decrease results
from the composition between the compression and the
shearing of the fluid. The compression makes the magnitude
of the transverse component of the magnetic field increase,
while the shearing causes it to decrease because the fluid is
sheared in the direction of the transverse component of the
magnetic field in the post-shock state for a slow shock.
Figure 5b shows a fluid element in the two sides of a slow
shock front.

A rotational discontinuity propagates at the speed C,.
Across the discontinuity surface, the transverse part of the
magnetic field undergoes a rotation around the normal of
the surface, and its magnitude is unchanged. There are
jumps in the transverse components of the flow velocity,
but no jumps in the density, the thermal pressure, and
the longitudinal component of the flow velocity. Thus the
characteristic speeds on both sides of the surface are the
same. For this reason, a rotational discontinuity cannot be
formed by the steepening of a smooth disturbance, We men-
tion that in the coordinate system moving with the velocity
vy (=B,y/ /4np +u,,), where the subscript ¢ denotes the
transverse component, the flow velocity is rotated in the
same way as the magnetic field, and its magnitude and angle
to the normal remain unchanged in this moving coordinate
system.

Switch-off shocks and switch-on shocks are two limiting
cases for the slow and fast shocks, respectively. From the
jump conditions, Egs. (3.1)-(3.7), it is not difficult to see
that there are two solutions for discontinuities which
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propagate at the speed W equal to C,,, namely rotational
discontinuities and switch-off shocks. For a switch-off
shock, the tangential part of the magnetic field is non-zero
in the pre-shock state but vanishes in the post-shock state.
If a fast shock propagates along the magnetic field, ie., the
transverse part of the magnetic field in the pre-shock state is
zero, if the magnetic field B, is sufficiently large and if the
shock speed W is precisely equal to C,, there will be a
tangential component of the magnetic field behind the
shock even though this component vanishes ahead of the
shock. Such a shock is called a switch-on shock.

The above is a complete list of the possible discontinuities
in ideal MHD. For the case where viscosity and resistivity
are non-vanishing, Wu [14,15,20] has discussed
phenomena of intermediate shocks. These phenomena will
not concern us here, because our Riemann solver is designed
for use in numerical simulations of ideal MHD. Simulations
of more complete MHD equations can be constructed by
adding dissipation terms as a separate numerical step,
without altering the Riemann solver presented here.

Except switch-on and switch-off shocks, fast and slow
shocks have the relations between their pre-shock state and
post-shock state:

BZO[B}-]szU[Bz]s (4a)

B:O[u}']:B}'O[u:]' (5)

Thus across both fast and slow shocks, the transverse
components of the magnetic field obey the relation:

=— (4b)

i.e., the orientations of the transverse part of the magnetic
field in the pre-shock states and the post-shock states are
either exactly the same or opposite. The post-shock states
for different shock speeds for a given pre-shock state are
shown in Fig. 6, where both transverse components of the
magnetic field keep the same sign in their pre-shock states
and post-shock states. Thus the orientations of the trans-
verse part of the magnetic field in post-shock states are
exactly the same as those in pre-shock states for both fast
and slow shocks except for switch-on and switch-off shocks.

If the thermal pressure, the magnetic field, the density in
the pre-shock state {or in the post-shock state}, and the
shock speed are given, the jumps in all the variables can be
found through the following cubic equation (e.g., in terms of
the y-component of the magnetic field} and the general
jump conditions:

A[B_v]3+A2[B,v]2+A1[By]+A0=0. (6)
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FIG. 6. The solutions of the MHD jump conditions for a given pre-shock state (g, p, ., u,, u., B,, B.}=(1,1,0, 0,0, 3, 4) and different shock

speeds W. Here B, =3 and y=3. C, is the MHD slow wave speed for the given pre-shock state. The dashed lines are for fast rarefaction waves computed
from the jump conditions, the solid lines to the right of the dashed lines are for MHD fast shocks and the solid lines to the left are for the MHD slow
shocks.
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All the variables in the coefficients 4, A,, 4,, and 4, are
evaluated at the pre-shock state. The appropriate root for
Eq. (6) should be chosen by the entropy condition. If more
than one possible post-shock state is found, we evaluate the
entropy for each possible post-shock state. The physical
post-shock state must have larger entropy than that in the
pre-shock state if the wave involves a compression.

An immediate result of Eq. (6) is the jump in the compo-
nent 8, for the limiting case with B — oo, ie., the largest
possible jump across a shock

‘when W — o0.

[B.]=

B (7a)

{r—1)
Here the subscript “0” is used to refer to the pre-shock state.
This formula is also valid for the z-component of the
magnetic field. Using the general jump conditions, Egs.
{(3.1)-(3.7), with this result, we find that the iargest possible

jump in the specific volume is the same as that in
hydrodynamics:

DAI AND WOODWARD

These largest possible jumps are valid even for the special
case with a vanishing longitudinal component of the
magnetic field, which can be verified casily using Eq. (8)
below and the general jump conditions.

A typical behavior for the dependence of the post-shock
state on the shock speed W is given in Fig. 6, where the pre-
shock state {p, p, B,, B.)=(1, 1, 3, 4) with B =3 and
vanishing flow velocity, and the shock speed is normalized
by the slow wave speed at the pre-shock state. The dashed
lines correspond to fast rarefaction waves, the solid lines to
the left of the dashed lines are for siow shocks, and the solid
line to the right of the dashed lines are for fast shocks. The
dividing line between slow shocks and flast rarefactions is
W/C,,=1 and that between fast rarefactions and fast
shocks W/C,,= 1. It is easy to see that the post-shock state
changes very rapidly with the slow shock speed. We point
out again that we use the jump conditions Lo approximate
rarefactions.

It is clear from the relation Eq. (4b) that both transverse
components of the magnetic field at one side of a shock
cannot vanish while they are not ail zero at the other side,

2 , . .
[V]= = Ve when W - 0. (7b) except for switch-on and swith-off shocks. For this reason
)/ 13 3 - . .
(z+1) we can separate the special case with uniformly vanishing
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FIG. 7. The solutions of the MHD jump conditions for a given pre-shock state (p, p, u,, u,, u,, B,, B,)=(1,1,0,0,0, 3, 4) and for different shock
speeds W in the case B, = (. Here C,, is the magnetosonic wave speed for the given pre-shock state.
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transverse components of the magnetic field from the
general one discussed above. The dynamics in this special
case is exactly the same as that in hydrodynamics, since the
longitudinal component of the magnetic field plays no role
in the dynamics if there are no transverse components of the
magnetic field.

For the other special case with vanishing longitudinal
component B, of the magnetic ficld, magnetosonic shocks
can occur. For magnetosonic shocks, we have the following
relation between the pre-shock state, the jump in the total
pressure P, and the shock speed W, which is equivalent to
Eq. (6}

[P]= 2(y+])(Q1 VQi-0Qa)

Qi =(y+3) W7~ 2P,
Qr=8(y+ 1) W (W~

(8)
Clo)

Typical solutions for this relation and the jump conditions
in the special case are shown in Fig. 7, where the pre-shocks
state i1s the same as that in Fig. 6, except for the vanishing
of B,. There are no jumps in the transverse components of
the flow velocity.

5. A NONLINEAR RIEMANN SOLVER

In general, given a left state and a right state, there are
seven discontinuitics which emanate from the original jump
in our approximate treatment of the Riemann problem. The
seven possible discontinuities separate the whole (m —¢) or
{x —1) space into eight possibly different regions. We will
develop a Riemann solver here which can be used to
determine the states in each of the eight regions from the
given left and right states. Referring to Fig. 4 we will call the
orientations of the transverse components of the magnetic
field in regions R3 and Ré, i, and ¢, respectively, ie.,

From Eq. (4b) and the requirements for the contact dis-
continuity between the regions R4 and R3, we immediately
obtain the following relation between the two orientations:

tan ¢, =tan y,.
Thus, the orientations in regions R3, R4, RS, and R6 must
be the same. We call this common field orientation angle .

The orientations of the transverse components of the
magnetic field in regions R2 and R7 may be different from

SB1/11/2-11
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r and different from each other. According to Eq. (4b), the
orientations ¢y, and ¥, in regions R2 and R7 are equal to
those in the left state and right state, ;. and g, respec-
tively. If the orientations ¥, ¥, and  are the same, there
can be no rotational discontinuity involved in this Riemann
problem.

Wi = {(C2+C;+S5))

1
2(1+S,)

+ /(C2+CE+ 8 =41+ S)CICT =81} (9)

Here the plus sign is for fast shocks and the minus sign for
slow shocks. The coefficients Sy, S, and S, are defined as

1 f4.]

So= =5 (- g,
_Lf oy B 2
$1=3 {(v 2)ip 5 14,1426
‘ ) [4,]
—(y—4)ACy Z/C} A_v

{fp [4.0°+

-,E

+(7+2) 2024, [ 4,1+ i+ 1) C2C?

+(y+1)Ci-2C;C2 }[A]

\

All the variables in the coelficients are referred to pre-shock
states except for the jump [4,].

For the special case with a vanishing longitudinal part of
the magnetic field, we find an equivalent formula for
magnetosonic shocks,

W2i=L((C2,+G )+ J(CL+G ¥ —Gy).  (10)

Here &, and G, are defined as

G, =3y +3)p[P],
Gy=2p*{(y+ D[P+ 2yP}[P].

Equations {9) and (10) are nonlinecar. We note that a
formula similar to Eq. (9) can be obtained by replacement
of the y component by the z component if the y component
of the magnetic field vanishes.

For any given left and right states, we construct the
Riemann solution by the following procedures:

(1) Guess one transverse component {e.g, y-com-
ponent) B,,, B, 4, and B, of the magnetic field in regions
R2, R4, and R7, and the common orientation of the
transverse part of the magnetic field in regions R3, R4, RS,
and R6, y. Here tan yr = B_;/B ;.
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(2) Consider the right state and the left state as two
pre-shock states; calculate two fast shock speeds, one for the
wave moving to the right, the other for the wave moving
to the left; then apply the jump conditions Egs. (3.1)-(3.7)
with these two fast shock speeds and the magnetic field
component B in the two post-shock states to obtain the
complete states in regions R2 and R7, respectively.

(3} Perform the rotations with the earlier guess i ; then
use the jurnp conditions Eqs. (3.1)-(3.7) with the speed W
equal to the Alven speeds in regions R3 and R6 to obtain
the states in regions R3 and Ré, respectively.

(4) Consider the states in regions R3 and Ré6 as two pre-
shock states, repeat the procedure (2) for two slow shocks
instead of the fast shocks to obtain the states in regions R4
and RS,

(5) Apply the conditions for a contact discontinuity
between regions R4 and RS to improve the earlier guess on
B2, B, B, and y. as described below. With this
improved guess, go back to procedure (1).

Following the first four steps, the state in region R4 is a
function of the transverse components of the magnetic field
in regions R2 and R4, and the orientation ¢, and the state
in region RS is a function of the transverse components of
the magnetic field in the regions R7 and R4, and the orienta-
tion y. If B,,, B4, B,. and the orientation i are the solu-
tions of the Riemann problem, the two states in regions R4
and RS should be the same except for their densities and
energies, i.e.,

Upa(By2s Boas ¥) =1, (B,7, By ¥),
ol Byzs Bras W) =tt,5(By7, Boas W),
u‘,(B\g,Bm,\[l)——u B”,B\‘,,:,b)
PalB,2s Bygs )= ps(B,a, By ).

This set of equations can be solved for B,,, B4, B,s,
and i iteratively by Newton’s method; ie, we have the
following equations for the modifications 48,,, 6B, 68,-,
and oy for the initial guess on B,,, B,4, B,,, and y:

aur‘l aurd auxS)
OB s — 57 0B — o
aBJQ v (an4 aB_v4 v

Ju,, Ou,
N T L I
au,4 auw; ah’) auls
: B B
78,, 5 (aB_M 38,.) %~ 38,, "%
ou,, Ou,
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+(%‘%)5¢ 5= s (11c)
66;]4 *r2 (aagl‘aa;;) 68,4 — §§f753v7
+(a =3 o =rsm (11d)

It is quite tedious to write any derivative in the Jacobian in
one formula. Let us consider one derivative of u,5 as an
example. When we obtain u,  in the fourth step in the MHD
Riemann solver described above, u, s is a function of the
slow shock speed W, and the state in R6, i.c.,

B,
4n W,

uyi =Uys (By5 - BJ'G)'

1 1
Vs=Ve— ‘B;— [Bx(uus - “yo) W + VG(B'VS - B_vé)}‘

»5

Ues = Uy g WAVs— V).

Thus u s is a function of W, Vs, B,s, and B . According

to Eq. (9), the slow shock speed W is a function B ; and the
state in R, i.e.,

Ws = WS(B'\‘S’ Psr Pos B_vﬁ’ Bz(r)‘

The state in R6 is dependent upon the state in R7 and the
orientation i/, i.e.,

Vﬁ: V7! Pe=Ps Ug=HUyq,
B.g=cosy /B2, + BZ,
B.g=siny B_::Z? + B,
B,
u}'()'“'u,".’ 4 C,c’,'( ;7)
B,
U= U B.
26 = Hz7 47[(:‘7( -6 — B:7).

The state in R7 depends on the fast shock speed Wiand B,
where the fast shock speed W;is a function of B, according
to Eq. (9).

Since the dependence of w5 on B, involves a lot of
nested functions, we did not write down the derivative
Ou,s /0B, in one formula in our calculation. We find the
derivative du, /8B - in the way for nested functions.

We point out that if the y-component of the magnetic
field vanishes in some regions, e.g., in regions R1 or R3, we
should use the formula in Eq. (9) with the replacement of
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the y component by the z component. if the transverse part
of the magnetic field in the left {or right) state does not
vanish, that part in region R2 {or R7) cannot be zero either,
as shown in Fig. 5 for fast shocks. The left and right states
such that the transverse part of the magnetic fieid vanishes
in one state, but not in the other, satisfy the jump conditions
only when a switch-on or switch-off shock is involved.

For the special case without the longitudinal component
of the magnetic field, the possible discontinuities separate all
(m--1) or (x—1) space into only four possibly different
regions. Referring to Fig. 2, fast shocks will be replaced by
magnetosonic shocks. The states in regions R2, R3, and R4
are the same and the regions R5, R6, and R7 have another
common state. The densities, the transverse components of
the flow velocities, and the magnetic fields in the regions R4
and R5 may be different if there is a tangential discontinuity
involved.

For these special cases, following the method used in
PPM for the hydrodynamic case, we construct the Riemann
solver as follows. We first guess the common total pressure
P in the regions R4 and RS instead of the magnetic field.
Then considering the left and right states as two pre-shock
states and using Eq. (10), we calculate the two possible
magnetosonic shock speeds, one for the wave moving to the
left and the other for the wave moving to the right. After
this, we apply jump conditions with these two shock speeds
to obtain the complete states in the regions R4 and RS,
respectively. Finally the condition for a tangential discon-
tinuity between the regions R4 and R5 is used to improve
the initial guess on the common total pressure in the regions
R4 and RS. The condition for a tangential discontinuity is
that the longitudinal flow velocity must be the same in the
regions R4 and RS as well as their total pressures. With this
improved total pressure replacing the initial guess, we go
back to the first step for the iteration. The necessary
formulae for this procedure follows:

g Py, W_(Py))=u,s(Ps, W, (P,)),

My Gy 6W_  Ou.s  Oues OW
+ — - oP,
aP, oW_ 0P, &P, oW, &P,
SlUes— Uyy.

Here the shock speeds W, are the positive shock speed and
the negative shock speed calculated according to Eq. (10).
In the general case, an appropriate initial guess is very
critical in this Riemann solver for strong discontinuities. If
the initial guess makes the term in the square root of Eq. (9)
negative, or if it makes Wﬁs negative, the iterations cannot
be carried our further. Although several ways to find an
appropriate initial guess have been tried, it is still difficult to
find a method which works for all left and right states. The
first way we have investigated is that the initial guess is
calcuiated by the linear Riemann solver developed earlier.
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For weak discontinuities and some strong discontinuities,
the initial guess from the linear Riemann solver works quite
well, but it does not work for some of Riemann problems
involving strong discontinuities,

Another investigation for the initial guess is to choose
B,,, B, B, and ¢ simply as B, or B, and
tan~'(B.,/B,.) or tan”'(B_x/B,y), appropriately. The
most frequently occurring left and right states in numerical
MHD simulations involve only one strong discontinuity
and some other weak discontinuities. Thus, for the purpose
of the initial guess, we assume that the Riemann problem
involves only one strong discontinuity and some other weak
discontinuities. We may estimate the kind of the strong dis-
continuity and the direction of its propagation in some way.
If the strong discontinuity is a slow shock propagating to
the right, we simply guess B,; =B, B,,= B,,=B,,, and
% =tan~!(B,./B.,). We prefer to use the second method
rather than the first to find the initial guess for strong dis-
continuities. In numerical computations, to assure that the
assumption of a single strong wave (or no strong wave) is
justified, it may be necessary to orient the x-direction used
here to be orthogonal to this strong wave front before the
Riemann solver is applied,

It is often desired to unify the two approaches for the
initial guess, one of which works for weak discontinuities
and the other which works for strong discontinuities. As we
know, characteristics converge to a shock from both sides of
a shock if there exists a shock. The Riemann invariants from
each family are different between the two sides of a shock
front. The more different the Riemann invariants between
the left and right states are the stronger is the shock. Thus
we can choose the difference of Riemann invariants of
cach family between left and right states to estimate the
strength of the discontinuities involved in a particular
MHD Riemann problem, We may define a weighting factor
according to the difference in the Riemann invariants of the
same family. Finally we use the weighting factor to average
two initial guesses from the linear Riemann solver and from
the appropriate choice between left and right states. In order
to use the difference of the Riemann invariants to estimate
the strength of discontinuities, more appropriate Riemann
invariants for this purpose are dR;, , defined in the third
section, divided by (C?—C?2), dR,, divided by (C2—C?),
and R,. divided by B max(|B,|, | B.[)}/ar, respectively.
The largest absolute value among the differences of these
new Riemann invariants between left and right states, which
is multiplied by a quarter, is found to be an appropriate
weighting factor. If it is larger than unity, we set it to be
unity in our program. All the examples given below are
solved using the initial guess from this averaging procedure.

If there are several strong discontinuities generated from
left and right states, it is possible for an improved guess to
be far from both the initial guess and the final solution. This
will possibly make the iteration stop because of the terrible
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guess. In order to make the iteration gradually converge to
the final solution, we put a relaxation factor in the Newton
iteration Eqgs. (11a)-{11d) for multiple strong discon-
tinuities; i.e., we multiply the right sides of Egs. {11a)-(11d)
by a factor (1 — /%), where f'is a positive number less than
one and N is the number of iterations carried out. The
fourth example below is solved by this relaxation method.
In MHD simulations, the actual value of f can be chosen
according to the difference of left and fight states. For a
larger difference, f'is chosen to be larger.

We should point out that for some left and right states,
this relaxation still does not work. We give an example for
such cases. Since we use the Riemann solver only for the
calculation of time-averaged fluxes at the interfaces of
numerical zones, we can still give some reasonable fluxes if
the Riemann solver failed to find a solution for a specific
Riemann problem. Reasonable results can still be reached in
MHD simulations in this way even if the Riemann solver
failed at a specific point in time and space.

Now we apply this Riemann solver to several typical
examples. We set the specific heat y = 3 in all the examples
unless they are specified otherwise. All the motions of waves
in the following example are measured in the Lagrangian
coordinate. The rotated angles dy, and &, are defined
as i, = (3 —wr,) and Sy = (g —if;), respectively. For
those MHD Riemann problems which involve no rare-
faction waves, our Riemann solver is exact.

We first give an MHD Riemann problem which involves
multiple weak discontinuities. The left and right states for
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this example are (p, p, t,, u,, 4., B,, B}, = (1.08, 0.95, 1.2,
0.01, 0.5, 3.6, 2.0) and (p, p, u,, u,, 1., B,, B.)x = (1.0, 1.0,
0.0, 0.0, 0.0, 4.0, 2.0) with B, being two. This Riemann
problem involves two fast shocks with their Mach numbers
1.22 and 1.28, respectively, two slow shocks of Mach
numbers, 1.09 and 1.07, two rotational discontinuities
with their rotated angles 12° and 9°, respectively, and one
contact discontinuity. Table Ja shows the solutions for the
states in each region, and Table Ib contains the results for
the shock speeds and rotated angles from each iteration.

The second example is about magnetosonic shocks. The
left and right states in this example are (p, p, u,, B,, B.),. =
{0.1,04, 50, —1, —2yand (p, p, u.. B,, B.)pg=(0.1,02, 0,
1, 2) with vanishing transverse components of the flow
velocity. This single discontinuity will generate two strong
magnetosonic shocks, one moving to the right with its
Mach number 12.4 and the other moving to the left with its
Mach number 10.3. Table Ila gives the solutions of the
Riemann problem in different regions. The states in regions
R2 and R3 are the same as that in region R4 and the states
in regions R6 and R7 are the same as that in region R5. Both
transverse components of the flow velocity are the same for
all regions. Both transverse components of the magnetic
field increase across both shocks from the pre-shock state to
the post-shock state. Table 11b shows the convergence of the
shock speeds.

The third example we will show that the Riemann
problem invoives no rotatienal discontinuities. The left
and right states are chosen as (p, p, B), =(1,1,35),

TABLE Ia

A Riemann Problem and Its Solutions

Repions p P iy u, u. B, B.
RI 1.0800E + 00 9.5000E — 01 £.2000E + 00 1.0000E — 02 5.0000E —01 3.6000E + 00 2.0000E + 00
R2 14903E + 00 1.6558E + 00 6.0588E — 01 1.1235E — 01 5.5686E — 01 5.0987E + 00 2.8326E + 00
R3 1.4903E + Q0 1.6558E + 00 6.0588E — 01 22157E - 01 3.0125E - 01 5.5713E + 00 1.7264E + 00
R4 1.6343E +00 1.9317E + 00 5.7538E—01 4.7601E — 02 2473E -01 5.0074E + 00 1.5517E + (00
RS 14735E + 00 1.9317E + 00 5.7538E - 01 4.7601E - 02 2473E-01 S.0074E + 00 1.5517E + 00
R6 1.3090E + 00 1.5844E + 00 5.3432E-01 —18411E—-01 1.7554E — 01 57T083E 4+ 00 1.7689E + 00
R7 1.3090E + 00 1.5844E + 00 5.3432E - 01 —94572E-02 —47286E—02 5.3452E + 00 2.6726E + 00
RS 1.0000E + 00 [.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 4.0000E + 00 2.0000E + 00
TABLE Ib
The Sequence of Iterations for Shock Speeds
lteration wi_ W, _ W, W, afr, Sift,
0 —2.2996E + 00 —52268E—01 4.7068E — 01 2.1730E + 00 —78971E + 00 —54075E+ 00
1 —2.3286E + 00 —5.1576E —01 4.8196E — 01 2.2644E + 00 —1.2020E + 0t —9.5303E + 00
2 —23305E 4+ 00 —5.1593E—01 48143E — 01 22638E + 00 —LI837E+ 01 —9.3479E + 00
3 —2.3305E + 00 —5.1594E — 01 4 8144E — 01 22638E + 00 —11838E 401 —Q3481E 4 00

Note. B, =20,y=3.
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TABLE Ila

A Riemann Problem and Its Solutions
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Regions

s I o, B, &,
Rl L.ODODOE — 01 4.00009E — 01 5.00000E + 01 —L.ODDOOE + 00 —2.00000E + 00
R4 387123E -0 8.16610E + 01 2.50333E +01 —387123E + 00 —THHTE+ 00
R3S 390431E —01 8.16098E + 01 250333E+01 390431E 4+ 00 7.80862E + 00
R8 1.00000E — 01 2.00000E —01 0.00000E + 00 1. OO0O0E + 00 2.00000E + 00
TABLE 1Ib
The Sequence of Iterations for Shock Speeds
lteration Wi W,
0 —326279E - 01 3.18465E — 01
1 —1.12315E + 00 1.12075E + 00
2 —2.46048E + 00 245921E+ 00
3 —3.23887E+ 00 3.23787E + 00
4 —3.36376E + 00 3.36280E —00
5 —3.36622E + 00 3.36526E +00
6 —3.36622E + 00 3.36526E + 00
Note. B,=0,y=1%
Table 1ila
A Riemann Problem and Its Solutions
Regions P ¥ ", 1, i B, B.
R1 1.0000E + 00 1.0000E + 00 0.0000E + 00 (0000E + 00 0.0000E + 00 5. 0000E + 00 0.0000E + 00
R2 1.9185E +00 367T1ME +00 1.6671E + 00 3.5507E—01 0.0000E + 00 10179E + 00 0.0000E + 00
R3 1.9185E + 00 3677TIE+ 00 —§6671E+00 3.5507E —01 0.0000E + 00 1.0179E + 01 0.0000E + 00
R4 2.8546E + 00 7T.6459E + 00 —1.8549E + 00 —1.2024E + 00 0.0000E + 00 3.0094E + 00 0.0000E + 00
RS 8.5164E — 02 7TH6459E + 00 —1.8549E + 00 —1.2024E + 00 0.0000E + 00 3.0094E + 00 0.0000E 400
R6 8.6858E —03 79015E + 00 —1.7991E 4 00 5.5200E — 02 0.0000E + 00 1.7251E+ 00 0.0000E + 00
R7 8.6858E —02 T9015E + () —1.7991E + 00 §.5200E —02 0.0000E + 00 1.7251E +00 0.0000E + 00
RS 1.0000E — G1 1.0GO0E + 01 0.0600E + 00 G.0000E + 00 G0000E + 00 2.0000E + 0G (.0000E + 06
Table 11Ib
The Sequence of Iterations for Wave Speeds and Rotated Angles
Iteration Wi_ W,_ W, W, Sy, S,
0 —2D198E + 00 —~76TI3E—-01 2.6499E —01 1.3038E + 00 0.0000E + 00 0.0000E + 00
! —4.1821E + 00 —1.1950E + 00 23241E-01 1.1398E 4+ 00 0.0000E + 00 0.0000E + 00
2 — 3.5886E + G0 - LI73E+ 00 24275E—01 1.1838E+ 00 G0000E + 00 0.0000E + 00
3 —34851E + 00 ~1.0997E + 00 24379E —01 1.1889E + 00 0.0000E + 00 0.0000E + 00
4 —34822E+ 00 ~ LO99OE + 00 24380E—01 1IS9IE + 00 0.0000E + 00 0.0000E + 00

Note. B, =30,y=1



368

(p, p. B )x = (01,10, 2) with B, and the flow velocity u
equal to zero in the both states, The longitudinal field B is
three in this example. The solution of this Riemann problem
is given in Table I1Ia. It contains one fast shock with Mach
number M;_ = 1.724 and one slow shock with Mach num-
ber M, =1457 moving to the left, one {ast rarefaction
wave and one slow rarefaction wave moving to the right,
and one contact discontinuity. The magnetic field compo-
nent B. and the flow velocity component u_ are zero in all
the regions. Table IT1b shows the sequence of the iterations
for the wave (either shock or rarefaction) speeds W, and
W;., where the numbers in the {irst row come from the
initial guess, and the remaining one comes from each
iteration.

The fourth example is specifically chosen for comparison
with the results given by Brio and Wu [16]. We take
(0, p. B = (1, 1, \/4m), (p, p, B,)x = (0.125,0.1, — /),
with B, being 2.6587 and the vanishing flow velocity u and
the field component B, in both the left and right states; v in
this example is set to be two for the comparison of our result
whith those in previous work. The single initial discon-
tinuity will develop inte two fast rarefaction waves
propagating in opposite directions, two slow shocks, one of
which propagates to the right at its Mach number 2.2 and
the other of which propagates to the left at its Mach number
1.05, one rotational discontinuity with — 180° rotation and
one contact discontinuity, as shown in Tables I'Va and IVb.
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We point out that this pair of left and right states is the
same as that in the work done by Brio and Wu [16] and
recent work done by Zachary and Colella [22], where
a solution involving a compound wave is presented.
According to the MHD jump conditions equations
(3.1)—(3.7), the discontinuity which can change the sign of
transverse components of the magnetic field is exclusively
the rotational discontinuity for the case of non-vanishing B...
It is interesting to consider the states in R2 and R7 in the
example above as the left and right state of a new MHD
Riemann problem. We note that the left and right states
ar¢ the same as the two post-wave states for the two fast
rarefaction waves in the work by Brio and Wu [16] and the
work by Zachary and Colella [22]. According to our MHD
Riemann solver, this Riemann problem will involve two
slow shocks, one rotational discontinuity, and one contact
discontinuity as in the example above. Since there is no
longer any rarefaction wave involved, our Riemann solver is
exact for this MHD Riemann problem. When we use these
left and right states as an initial condition for a 1D MHD
numerical simulation, we find the same wave pattern
involving the compound wave as shown in [ 16, 227. We will
report our 1D MHD simulations in another paper in detail.
Apparently, this Riemann problem does not have a unique
solution.

Tables Va and Vb are for the Riemann problem: (p, p, u,,
u,,u, B, B)=(11,56,4,0,0,50, —3.5) and (p, p, 4.,

Table IVa

A Riemann Problem and Its Solutions

Regions p P U, u, u, B, B.
R1 1.000CE + 00 1.0000E + 00 0.000DE + 00 0.00DDE + 00 0.000G0E + 00 3.5449E + 00 0.0000E — OO
R2 68523E—-01 4.4545E - 01 6.3274E —01 —2.1509E - 01 —6.0676E — 01 2.1446E + 00 6.0458E — 09
R3 6.8523E - 01 44545E —01 6.327T4E—01 —1.6768E + 00 —6.6560E — 01 —2.1446E + 00 — 1.8749E — (7
R4 7.3224E — 01 5.0883E-01 5.8525E—01 —1.5749E + 00 —5.7652E — 08 —1.9004E + 00 —1.6614E —07
RS 23451E-01 5.0883E —01 58525E—01 —1.5749E 4+ 00 LI541E - 07 — 1.9004E + 00 —1.6614E — 07
R6 1.1665E — 01 8.6904E — 02 —2.5050E —01 —1.7430E - 01 2.3786E — 07 —31845E+ 00 —2.7840E — 07
R7 1.1665E — 01 8.6904E — 02 —2.5050E —01 —1.7430E— 01 49169E — 10 —3.1843E 4+ 00 8.9834E —09
RS 1.2500E — 01 1.OOOOE — 01 0.0000E + 00 0.0000E + 00 0.0000E + 00 —3.5449E + 00 0.0000E — 00
Table IVh
The Sequence of Iterations for Wave Speeds and Rotated Angles

Iteration We. W, _ W, W, . Sifr, S,

0 —1.5774E + 00 —354093E-01 84216E —02 4.1600E — 01 1.7992E + 02 8.1566E — 02

1 -~ 13677TE + 00 —44824E — 01 14373E—-01 4.1763E — 01 1.7992E + 02 8.1566E — 02

2 —13654E + 00 —49123E-0l 1.8494E —01 43134E 01 L7992E + 02 8.1566E — 02

3 —1.3767E + 00 —5.0627E - 01 1.9365E — 01 43718E — 01 1.7992E + 02 8.1566E — 02

4 —1.3774E + 00 —50696E —-01 19398E - 01 43745E - 01 L7992E + 02 B.IS66E — 02

5 —13774E + 00 ~50696E - 01 1.9398E — 01 4.37145E - 01 1.7992E + 02 8.1566E-02

Note. B,=26587,y=2.
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Table Va

A Riemann Problem and Its Solutions

Regions p p u, u, u, B, B.
R1 1.1000E + 00 5.6000E + 00 4.0000E + 00 0.0000E + 00 0.0000E + 00 5.0000E + 00 —3.5000E + 00
R2 2.3369E + 00 2.3753E+01 59437E — 01 34841E —01 --24389E — 01 LLI198E + 01 —7.8383E + 00
R3 2.3369E +00 23753E4+01 59437E—-01 78667E — 01 9.0440E — 01 1.3573E + 01 —1.6156E + 00
R4 2.5339E + 00 27200E + 01 5.2958E—01 76251E—02 9.8897E — 01 1.OO95E + 01 —1.2017E+ 00
RS 34751E +00 2.7200E + 01 52958E—01 76251E—-02 9.8897E — 01 1.0095E + 01 —12017E+00
R6 3.0599E + 00 2.1952E+01 44313E-01 —8.1869E — 0l 1.0955E + 00 1.5074E + 01 —1.7943E + 00
R7 3.0599E + 00 2.1952E+01 44313E-01 —5.7740E — 01 —28870E -0 1.3578E + 01 6.78%9E + 00
RS 1.0000E + 00 1.0000E + 00 —4.0000E + 00 0.0000E + 00 0.0000E + 00 4 0000E + 00 2.0000E + 00
Table Vb

The Sequence of Iterations for Wave Speeds and Rotated Angles

Iteration W _ W, _ W, W, I i,
0 —3.3667E + Q0 —1.2090E + 00 9.1163E —01 2.1461E + 00 —30553E + 02 —7.0885E 400
t —5.7345E+ 00 —14637E + 00 24161E + 00 78614E + 00 30425E+ 01 3.2887E+02
2 —T.2702E -+ 00 —19679E + 00 22096E + 00 6.6764E + 00 2.8082E + 01 3.2653E+02
3 —7.0831E+00 —1.9484E + 00 22135E+00 6.6004E + 00 2.8195E+01 3.2664E + 02
4 —7077T7E+00 —1.9476E + 00 22136E +00 6.6001E +00 2.8204E + 01 3.2665E + 02
5 —T707TTTE +00 —1.9476E + 00 22136E 400 6.6001E +00 2.8204E + 01 3.2665E + 02

Note. B,=50,y=3.

u,u., B, B.)g=1(1,1,0,0,0, 4, 2) with B being five. We
have used the relaxation factor f=0.5 in this example.
Table Va shows the converged solution for the Riemann
problem in all the regions. Table Vb displays the con-
vergence process for shock speeds and rotated angles. The
final row in Table Vb is the converged solution. It is clear
that the solutions display two strong fast shocks with their
Mach numbers M,_ =307 and M, =5.133, two slow
shocks with M,_ = 1.09 and M, = 1.07, two rotations, and
one contact discontinuity. Although the Mach numbers for
the two slow shocks are small, the jumps of the magnetic
ficld across the slow shocks are not small.

Finaily we give an example in which the initial guess from
the second method discussed before does not work. The left
and right states arc (p, p, u,, u,, 4., B,, B.); = (1, 20, 10,
0,0,50), (o, pty, 10, u, B, B)g=(1,1, —10,0,0,5,0)
with B, equal five. Table VI gives the solution of the
Riemann probiem in all the regions if an appropriate initial
guess can be found. This Riemann probiem contains
two fast shocks with Mach numbers M, =654 and
M. =249, one weak slow shock, one slow rarefaction, and
one contact discontinuity. Since the MHD Riemann solver
developed here is for the calculation of time-averaged fluxes
at the interfaces of numerical zones in MHD simulations.

Table V1

A Riemann Problem and Tts Solutions

Regions ] p U, u, U, B, B
R1 1.0000E + 00 2.0000E + 01 1.0000E + 01 0.0000E + 00 0.0000E + 00 5.0000E + 00 0.0000E + 00
R2 26797E +00 1.5098E + 02 72113E-01 23138E—01 0.0000E + 00 1.3608E 4+ 01 0.0000E + 00
R3 2.6797E + 00 1.5098E + 02 72113E—-01 23138E—-01 0.0000E + 00 1.3608E + 01 0.0000E + 00
R4 26713E+00 L5019E + 02 7.2376E — 01 3.5683E — 01 0.0000E + 00 i4314E 401 0.0000E + 00
R5 3.8508E + 00 1.5019E +02 7.2376E — 01 3.5683E— 01 0.0000E + 00 14314E+ 01 0.0000E + 00
R6 3.7481E 4+ 00 1.4357E + 02 7.0505E — 01 —38803E-01 0.0000E + 00 1.923%9E + 01 0.0000E + 00
R7 3.7481E + 00 14357E +02 70505E — 01 —38803E-01 0.0000E + 00 1.9239E + 01 0.0000E +00
R8 1.0000E + 00 1.0000E + 00 - LOOOOE 4 01 0.0000E + 00 (L.000OE + 00 5.0000E + 00 (0.0000E + 00

Note. B,=50,y=1.
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Any reasonable fluxes can be used if the Riemann solver
failed at a specific interface and at a specific time. It shouid
be noted that this example involves two very strong waves,
a solution which arises only rarely during a numerical com-
putation and which is invariably of a transient nature. The
numerical computation recovers easily from such transients,
as is illustrated below.

Figure 8 shows the results of MHD simulations with the
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initial condition (p, p, u,, u,, u., B,, B.); = (1, 20, 10, 0, 0,
0,5, 0)for x<05 and (p, p, u, u,, u., B, B.)g=(1, 1,
—10, 0, 0, 5, 0) for x> 0.5, where 200 uniform numerical
zones are used. The dashed lines in Fig. 8 are the initial con-
ditions, and the solid lines are the profiles of the physical
variables after all the discontinuities generated from the
imitial single discontinuity are separated. The initial guess
failed for these left and right states and the MHD Riemann
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FIG. 8. The profiles in a 1D MHD computer simulation with the left and right states (p, p, .. #,, ., B,, B)y =(1, 20, 10, 0, 0, 5, 0) and
(p, Pyt 1ty u, B, Bp=(1,2, —10,0,0, 5, 0) with 8, =5 and y = 3. 200 numerical zones are used in the simulation. The dashed lines are the initial

condition, and the solid lines are the profiles at : =0.08.
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solver could not solvé the Riemann problem successfully
with the initial guess. In MHD simulations we simply give
the average values of the left and right states for fluxes if the
Riemann solver fails at any specific interface and at any
specific time. Figure8 shows one strong fast shock
propagating to the right, one fast shock moving to the left,
one contact discontinuity, and one weak slow shock.

In some applications of MHD, people are interested in
two-dimensional phenomena, and in the fast shocks and the
slow shocks, but not in the rotational discontinuities. Thus
an MHD Riemann solver {or the flow with two compoenents
1s needed. Most of the work reported above is also valid for
these applications with some necessary changes in formulae.
In the remaining part of this section, we will make the
changes to present an approximate Riemann solver for
these applications. We will suppose that there are no
z-components of the magnetic field and flow velocity in the
following part of this section.

It is known that the system permits the fast and slow
waves only. The Alfven wave is excluded from the system
since the restriction of only two instead of three components
is applied. The perturbation éB in magnetic field B is per-
pendicular to both the magnetic fiekd and the direction of
wave propagation for Alfven waves. For this reason, Alfven
waves are the three-component phenomena. They can be
seen in two-component systems only in the special case with
the direction of the propagation aligned with the magnetic
field. All the formulae for the fast and slow wave speeds and
their associated Riemann invariants given in the third
section are still valid by simply setting B, =u,=0.

For flows with discontinuities, the relations between the
jumps across the shock front and the shock speed, Eq. (6)
and Eq. (9), are also true if the parameter 2 is set to be zero.
With these relations, we construct the procedures of the
Riemann solver for two-component simulations by the
following procedures:

(1) Guess the transverse component of the magnetic
field B,,, B,,, and B,, in regions R2, R4, and R7, and R7,
and let B, equal B ,.

{2) Calculate two possible fast shock speeds in both
directions, then apply the jump conditions to obtain the
complete states in regions R2 and R7, respectively.

{3} Let the state in regions R3 and R5 equal the
states in regions R2 and R7 since there is no rotational
discontinuity involved.

(4) Repeat procedure (2) for two possible slow shocks
to obtain two slow shock speeds and the states in regions R4
and RS5.

(5) Use the conditions for a contact discontinuity
between the regions R4 and RS w4 =u s, 1,4 =u,s, and
Pa= Ps to iImprove the earlier guess on the magnetic field in
regions R2, R4, and R7; then go back to the procedure (1).
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6. SUMMARY AND DISCUSSION

To find an efficient Godunov-type scheme for com-
pressible MHD with strong discontinuities is the main
motivation of this work. The necessary ingredients for such
a scheme include upstream centering for all Riemann
invariants, a correct weak-wave limit, and some degree of
nonlinearity for strong shocks. The MHD Riemann solver
presented in this paper is designed mainly for the calcula-
tion of time-averaged fluxes at the interfaces of numerical
zones. Qur main concern for the MHD Riemann solver is
that it produces reasonable solutions obeying all conserva-
tion laws for any pair of left and right states, but our MHD
Riemann solver need not give exact solutions. The numeri-
cal method we want to develop should work for all kinds of
the discontinuities in ideal MHD, including fast shocks,
slow shocks, rotational discontinuities, tangential discon-
tinuities, and contact discontinuities. We believe that one of
the main difficulties in this task is solving the Riemann
problem in ideal MHD in an appropriate approximation.
The problem is that the solution of the ideal MHD Riemann
problem is not unique. We have chosen the branch of
solutions which takes a correct weak-wave limit and the
Riemann invariants from their proper domains and
incorporates them in a reasonable fashion of the nonlinear
jump conditions for strong discontinuous waves.

In order to solve the Riemann problem approximately,
we have investigated all the discontinuities in MHD. We
have found that the three component model is necessary for
the MHD Riemann problem to display all the discon-
tinuities. The compound wave reported in the earlier work
disappears in our solutions from the MHD Riemann solver,
but it will be generated through the conservation law, Egs.
(2.1Y~(2.7), no matter what approximation we use in the
calculation of time-averaged fluxes at the interfaces of the
numerical zones if the conditions of the flow demand its
appearance. Even if we are given such left and right states in
which there are no third components of both the magnetic
field and the flow velocity, the solutions of the Riemann
problem may involve rotational discontinuities. In order to
develop an efficient Riemann solver for MHD, we have
found completely nonlinear formulae for both fast and slow
shock speeds in terms of their pre-shock states and one
variable at their post-shock states. We have also obtained
formulae for the jumps across a shock in terms of the shock
speed and the pre-shock state.

Based .on these results about shocks and rotational
discontinuities, a nonlinear approximate MHD Riemann
solver has been constructed. It consists of the initial guess,
the calculation of two shock speeds and two post-shock
states for two possible fast shocks, the performance of rota-
tions, the calculation of two slow shock speeds and their
post-shock states and the improvement of the initial guess.
This Riemann solver separates all the possible discon-
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tinuities in MHD from the initial single discontinuity. The
solutions of a general Riemann problem in ideal MHD
involve two fast waves (either shock or rarefaction), two
rotational discontinuities with different angles rotated, two
slow waves (either shock or rarefaction), and one contact
discontinuity. We have given solutions for several typical
MHD Riemann problems which involve multiple strong
discontinuities.

In order to make the initial guess properly, we have given
equations for seven characteristics and their associated
Riemann invariants. Based on the theory of characteristics
and Riemann invariants, a linear Riemann solver has been
given in the first part of the paper. The linear Riemann
solver is valid only for infinitesimal jumps, but is also used
in the initial guess in the nonlinear Riemann solver. An
alternative for the initial guess from the linear Riemann
solver is suggested which appropriately chooses the value at
the left or right state as the initial guess assuming that there
15 only one strong discontinuity and some other weak dis-
continuities. For some left and right states, which involve
multiple strong discontinuities, a relaxation method is used.

We start from the jump conditions, the conservation laws
across any discontinuity surface. We expect this technique
works well for MHD shock dynamics, but limits the
application of the Riemann solver to weak rarefactions, An
appropriate initial guess is critical for this Riemann solver
for some MHD Riemann problems which involve multiple
strong discontinuities.

Although the Riemann solver may be put to more
sophisticated use through enough iterations, its main
application will be the calculation of the fluxes in a
Godunov-type scheme. For most problems in MHD, we
find that one iteration is enough to obtain sufficiently
accurate fluxes in an actual code even for very strong MHD
shocks. Such examples of the calculation may be found
in our subsequent paper. Without any optimization, the
Riemann solver with one iteration in our current one-
dimensional code may solve 348,143 Riemann problems per
second on a Cray-C90 machine. The complexity of the
Riemann solver is determined by the MHI> equations. The
most efficient implementation of the Riemann solver in a
Godunov-type scheme remains to be found. The cost of the
Riemann solver in an actual code may be reduced. For
example, only in a part of the simulation domain is the non-
linear Riemann solver needed, and in the other part, our
linear Riemann solver is enough to give a reasonable solu-
tion for the fluxes. The cost of the Riemann solver in an
actual code depends on efficient use of the Riemann solver
and on a specific problem which determines the necessary
part of the simulation domain for use of the nonlinear
Riemann solver. Therefore, the cost of the Riemann solver
should be reported in the actual simulation for a specific
problem.
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